
I/O Management and
Disk Scheduling

Chapter 11

Contents

?I/O devices
?Organization of I/O function
?OS design issues
?I/O buffering
?Disk scheduling
?RAID
?Disk cache
?Unix SVR4 I/O
?Windows 2000 I/O

Categories of I/O Devices

?Human readable
?used to communicate with the user
?video display terminals
?keyboard
?mouse
?printer

Categories of I/O Devices

?Machine readable
?used to communicate with electronic

equipment
?disk drives
?tape drives
?controllers
?sensors
?actuators

Categories of I/O Devices

?Communication
?used to communicate with remote devices
?digital line drivers
?modems
?network drivers

Differences in I/O Devices

?Data Transfer Rate
?Application
?disk used to store files must have file-

management software
?disk used to store virtual memory pages

needs special hardware to support it
?terminal used by system administrator may

have a higher priority

Differences in I/O Devices

?Complexity of control
?Unit of transfer
?data may be transferred as a stream of bytes

for a terminal or in larger blocks for a disk
?Data representation
?encoding schemes

?Error conditions
?devices respond to errors differently

Techniques for I/O function

?Programmed I/O
?process is busy-waiting for the operation to

complete

?Interrupt-driven I/O
?I/O command is issued
?processor continues executing instructions
?I/O module sends an interrupt when done

Techniques for I/O function

?Direct Memory Access (DMA)
?DMA module controls exchange of data

between main memory and the I/O device
?processor interrupted only after entire block

has been transferred

Evolution of the I/O Function

?Processor directly controls a peripheral
device
?simple microprocessor-controlled devices

?Controller or I/O module is added
?processor uses programmed I/O without

interrupts
?processor does not need to handle details of

external devices

Evolution of the I/O Function

?Controller or I/O module with interrupts
?processor does not spend time waiting for an

I/O operation to be performed

?Direct Memory Access
?blocks of data are moved into memory

without involving the processor
?processor involved at beginning and end only

Evolution of the I/O Function

?I/O module is a separate processor
?I/O channel
?access main memory for instructions

?I/O processor with its own memory
?it is a computer in its own right
?a large set of I/O devices can be controlled
?a common use is to control communications

with interactive terminals

Direct Memory Access

?Takes over control of the system from the CPU
to transfer data to and from memory over the
system bus

?Cycle stealing is commonly used to transfer data
on the system bus
?processor is suspended just before it needs to use

the bus
?DMA transfers one word and returns control to the

processor
?processor pauses for one bus cycle

How DMA Works?

?Processor sends the following information
?read or write?
?address of I/O device involved
?starting address in memory
?number of words

?DMA transfers the entire block
?DMA sends an interrupt signal when done

DMA

DMA Configurations

?Single bus, detached DMA
?all modules share the same system bus
?inexpensive, but inefficient

?Single bus, integrated DMA-I/O
?there is a separate path between DMA and I/O

modules

?I/O bus
?only one interface between DMA and I/O modules
?provides for an easily expandable configuration

OS Design Objectives

?Efficiency
?Extremely slow compared with CPU
?Use of multiprogramming allows for some

processes to be waiting on I/O while another
process executes
?Swapping is used to bring in additional Ready

processes to keep the processor busy
?Disk I/O is important to improve the efficiency

of the I/O

OS Design Objectives

?Generality
?Desirable to handle all I/O devices in a

uniform manner
?Hide most of the details of device I/O in

lower-level routines so that processes see
devices in terms of general functions such as
Read, Write, Open, and Close

I/O Buffering

?Perform input transfers in advance of
requests and perform output transfers
sometime after the request is made
?Schemes
?single buffering
?double buffering
?circular buffering

I/O Buffering

?Types of I/O devices
?Block-oriented devices
?information is stored in fixed sized blocks
?transfers are made a block at a time
?used for disks and tapes

?Stream-oriented devices
?transfer information as a stream of bytes
?used for terminals, printers, communication ports, mouse,

and most other devices that are not secondary storage

Single Buffer

?OS assigns a buffer in main memory for
an I/O request
?Block-oriented
?input transfers made to buffer
?block moved to user space when needed
?another block is moved into the buffer
?read ahead

Single Buffer

?Block-oriented
?user process can process one block of data while

next block is read in
?swapping can occur since input is taking place in

system memory, not user memory
?operating system keeps track of assignment of

system buffers to user processes
?output is accomplished by the user process writing a

block to the buffer and later actually written out

Single Buffer

?Stream-oriented
?used a line at time
?user input from a terminal is one line at a

time with carriage return signaling the end of
the line
?output to the terminal is one line at a time

Double Buffer

?Use two system buffers instead of one
?A process can transfer data to or from

one buffer while the operating system
empties or fills the other buffer

Circular Buffer

?More than two buffers are used
?Each individual buffer is one unit in a

circular buffer
?Used when I/O operation must keep up

with process

Disk Performance
Parameters

?To read or write, the disk head must be
positioned at the desired track and at the
beginning of the desired sector

?Disk I/O time
?queuing time (wait for device) +
?channel waiting time (wait for channel) +
?seek time +
?rotational delay (latency) +
?data transfer time

Disk Performance
Parameters

?Seek time
?time it takes to position the head at the

desired track
?Ts = m ? n + s
?Ts = estimated seek time, n = number of tracks

traversed, m = constant that depends on the disk
drive, s = startup time
?inexpensive disk : m = 0.3, s = 20ms
?expensive disk : m = 0.1, s = 3ms

Disk Performance
Parameters

?Rotational delay or rotational latency
?time its takes until desired sector is rotated to

line up with the head
?Tr = 1 / (2r)
?Tr = average rotational delay time, r = rotation

speed in revolutions per second
?disk : 3600 rpm, 16.7 ms/rot, Tr = 8.3 ms ;
?floppy : 300~600 rpm, 100~200 ms/rot, Tr =

50~100 ms

Disk Performance
Parameters

?Transfer time
?time its takes while desired sector moves

under the head
? Tt = b / (rN)
?Tt = transfer time
?b = number of bytes to be transferred
?N = number of bytes on a track
?r = rotation speed in revolutions per second

Disk Performance
Parameters

?Access time
?sum of seek time and rotational delay
?the time it takes to get in position to read or

write

?Total Access Time
?Ta = Ts + Tr + Tt = Ts + 1/(2r) + b/(rN)

Timing Comparison

?Data transfer occurs as the sector moves
under the head
?Data transfer for an entire file is faster

when the file is stored in the same
cylinder and in adjacent sectors
?Illustrate the danger of relying on average

values

Timing Comparison

?Disk specification
?average seek time : 20 ms
?a transfer rate : 1MB/s
?512-byte sectors with 32 sectors per track
?suppose reading a file consisting 2048 sectors

for a total of 1MB : 64 tracks ? 32
sectors/track = 2048 sectors
?Tt = b / (rN) = 1024 * 1024 / (r * 512 * 32)
? ? r = 64

Timing Comparison

?Sequential organization (single surface)
?first track = 45 ms = 20 ms (average seek) +

8.3 ms (rotational delay) + 16.7 ms (read 32
sectors)
?each succeeding 63 tracks = 25 ms = 8.3 ms

(rotational delay) + 16.7 ms (read 32 sectors)
?total time = 45 ms + 63 tracks * 25 ms =

1620 ms = 1.6 sec

Timing Comparison

?Random access (single surface)
?each sector = 28.8 ms = 20 ms (average

seek) + 8.3 ms (rotational delay) + 0.5 ms
(read 1 sector)
?total time = 2048 sectors * 28.8 ms = 58982

ms = 59 sec

Timing Comparison

?Sequential parallel access
?stored on same cylinders and same tracks
?disk consists of 8 surfaces
?first cylinder(8 tracks) = 45 ms = 20 ms

(average seek) + 8.3 ms (rotational delay) +
16.7 ms (read 32 sectors)
?each succeeding 7 cylinders = 25ms = 8.3ms

(rotational delay) + 16.7 ms (read 32 sectors)
?total time = 45ms + 7 * 25ms = 220 ms

Disk Scheduling Policies

?Seek time is the reason for the difference
in performance
?need to reduce the average seek time
?OS maintains a queue of requests for each

I/O devices
?For a single disk there will be a number of I/O

requests from processes in the queue

Disk Scheduling Policies

?Assume a disk with 200 tracks
?Starting at track 100 in the direction of

increasing track number
?Requested tracks in the order received :

55, 58, 39, 18, 90, 160, 150, 38, 184

Disk Scheduling Policies

?Random scheduling
?First-in, first-out (FIFO)
?Priority
?Last-in, first-out
?Shortest Service Time First
?SCAN
?C-SCAN
?N-step-SCAN
?FSCAN

Disk Scheduling Policies

?Random scheduling
?select requests from queue in random order
?the worst possible performance
?useful as a benchmark against which to

evaluate other techniques

Disk Scheduling Policies

?First-in, first-out (FIFO)
?process request sequentially
?fair to all processes
?if there are only a few processes that require

access and if many of the requests are to
clustered, good performance can be hoped
?approaches random scheduling in

performance if there are many processes

Disk Scheduling Policies

?Priority
?goal is not to optimize disk use but to meet

other objectives
?short batch jobs may have higher priority
?provide good interactive response time

?longer jobs may have to wait long

Disk Scheduling Policies

?Last-in, first-out
?good for transaction processing systems
?the device is given to the most recent user so

there should be little arm movement
?improve throughput and reduce queue length

?possibility of starvation since a job may never
regain the head of the line

Disk Scheduling Policies

?Shortest Service Time First
?select the disk I/O request that requires the

least movement of the disk arm from its
current position
?always choose to incur the minimum Seek

time

Disk Scheduling Policies

?SCAN
?arm moves in one direction only, satisfying all

outstanding requests until it reaches the last
track in that direction
?direction is reversed

Disk Scheduling Policies

?C-SCAN
?restricts scanning to one direction only
?when the last track has been visited in one

direction, the arm is returned to the opposite
end of the disk and the scan begins again

Disk Scheduling Policies

?N-step-SCAN
?segments the disk request queue into sub-

queues of length N
?sub-queues are processed one at a time,

using SCAN
?new requests added to other queue when

queue is processed
?with large value of N, this is similar to SCAN
?with N = 1, this is same as FIFO

Disk Scheduling Policies

?FSCAN
?two queues
?when a scan begins, all of the requests are in

one of the queues, with the other empty
?during the scan, all new requests are put into

the other queue

?Why RAID?
?big speed gap between CPU and disk
?why not having a parallelism in disks?
?Redundant Array of Independent Disks

?RAID
?many SCSI disks with RAID SCSI controller
?organizations defined by Patterson et al.
?level 0 through level 6

?SLED(Single Large Expensive Disk)

RAID(Redundant Array of
Independent Disks)

RAID(Redundant Array of
Independent Disks)

?Array of disks that operate independently
and in parallel
?distribute the data on multiple disks
?single I/O request can be executed in parallel

?replaces large-capacity disk drives with
multiple smaller-capacity drives
?improves I/O performance and allows easier

incremental increases in capacity

Characteristics of RAID

?RAID is a set of physical disk drives
viewed by OS as a single logical drive
?Data are distributed across the physical

drives of an array
?Redundant disk capacity is used to store

parity information, which guarantees data
recoverability in case of a disk failure

Table 11.4 RAID levels

RAID 0 (non-redundant)

?a logical disk is divided into strips
?strips : physical blocks, sectors, or some

other unit
?writes consecutive strips over the drives

in round robin way
?a stripe : a set of logically consecutive

strips that maps exactly one strip to each
array member

RAID 0 (non-redundant)

RAID 1 (mirrored)

?on a write, every strip is written twice
?on a read, either copy can be used
?read performance can be up to twice as good

?fault-tolerance is excellent

RAID 1 (mirrored)

RAID 2 (redundancy
through Hamming code)

?works on a word basis + Hamming code
?splitting each byte into a pair of 4-bit nibbles
?adding 3 parity bits
?7 bits are spread over the 7 drives

?performance is good
?in one sector time, it could write 4 sectors
?losing one drive do not cause any problem

?all the drives must be synchronized
?on a single write, all data disks and parity disks must

be accessed

RAID 2 (redundancy
through Hamming code)

RAID 3 (bit-interleaved
parity)

?similar to RAID 2 : requires only single
redundant disk
?a parity bit is generated by exclusive-or of

across corresponding bits on each data
disk
?X4(i) = X3(i) + X2(i) + X1(i) + X0(i)
?X1(i) = X4(i) + X3(i) + X2(i) + X0(i)

RAID 3 (bit-interleaved
parity)

RAID 4 (block-level parity)

?work with strips with a strip-for-strip
parity written onto an extra drive
?all the strips are EXCLUSIVE ORed together

?if a drive crashes, the lost bytes can be
recomputed from the parity drive
?performs poorly for small updates
?need to recalculate the parity every time

?parity drive may become a bottleneck

RAID 4 (block-level parity)

?use an independent access technique
?X4(i) = X3(i) + X2(i) + X1(i) + X0(i)
?X4’(i) = X3(i) + X2(i) + X1’(i) + X0(i)

= X3(i) + X2(i) + X1’(i) + X0(i) + X1(i) + X1(i)
= X4(i) + X1(i) + X1’(i)

RAID 4 (block-level parity)

RAID 5 (block-level
distributed parity)

?distributing the parity bits uniformly over
all the drives

RAID 5 (block-level
distributed parity)

RAID 6 (dual redundancy)

Disk Cache

?Buffer in main memory for disk sectors
?Contains a copy of some of the sectors on

the disk
?When an I/O request is made, a check is

made to determine if the sector is in the
disk cache

Replacement Policies

?When a new sector is brought into the
disk cache, one of the existing blocks
must be replaced
?Least Recently Used
?Least Frequently Used

Least Recently Used

?The block that has been in the cache the
longest with no reference to it is replaced
?The cache consists of a stack of blocks
?When a block is referenced or brought into the

cache, it is placed on the top of the stack
?Most recently referenced block is on the top of the

stack
?The block on the bottom of the stack is removed

when a new block is brought in
?Blocks don’t actually move around in main memory
?A stack of pointers is used

Least Frequently Used

?The block that has experienced the fewest
references is replaced
?A counter is associated with each block
?Counter is incremented each time block

accessed
?Block with smallest count is selected for

replacement
?Some blocks may be referenced many times

in a short period of time and then not needed
any more
?frequency-based replacement technique

Figure 11.11 Frequency-Based Replacement

UNIX SVR4 I/O Structure

Figure 11.15 Unix buffer cache organization

