/O Management and
Disk Scheduling

Chapter 11



Contents

1/0 devices

Organization of 1/0 function
OS design Issues

1/0 buffering

DIsk scheduling

RAID

DISk cache

Unix SVR4 1/0

Windows 2000 1/0




Categories of 1/0 Devices

Human readable
used to communicate with the user
video display terminals
keyboard
mouse
printer



Categories of 1/0 Devices

Machine readable

used to communicate with electronic
equipment

disk drives
tape drives
controllers
Sensors
actuators



Categories of 1/0 Devices

Communication
used to communicate with remote devices
digital line drivers
modems
network drivers



Differences In I/O Devices

Data Transfer Rate

Application

disk used to store files must have file-
management software

disk used to store virtual memory pages
needs special hardware to support it

terminal used by system administrator may
have a higher priority



Glgabit Ethernet

Graphics display

Hard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy disk

i

Modem

Mouse

Kevboard
10! 10? 107 [i 0= 10 107 108 107

Data Rate (bps)

Figure 11.1 Typical I/O Device Data Rates



Differences In I/O Devices

Complexity of control

Unit of transfer

data may be transferred as a stream of bytes
for a terminal or In larger blocks for a disk

Data representation
encoding schemes

Error conditions
devices respond to errors differently



Techniques for I/O function

Programmed 1/0

process Is busy-waiting for the operation to
complete

Interrupt-driven 1/0
/0 command Is issued
processor continues executing instructions
/0 module sends an interrupt when done




Techniques for I/O function

Direct Memory Access (DMA)

DMA module controls exchange of data
netween main memory and the 1/0 device

processor interrupted only after entire block
nas been transferred




Evolution of the I/O Function

Processor directly controls a peripheral
device

simple microprocessor-controlled devices

Controller or 1/0 module 1s added

processor uses programmed 1/0 without
Interrupts

processor does not need to handle detalls of
external devices



Evolution of the I/O Function

Controller or I/0 module with interrupts

processor does not spend time waiting for an
/O operation to be performed

Direct Memory Access

blocks of data are moved into memory
without involving the processor

processor involved at beginning and end only



Evolution of the I/O Function

/0 module Is a separate processor
/0 channel
access main memory for instructions

/0 processor with its own memory
It IS a computer in its own right
a large set of 1/0 devices can be controlled

a common use Is to control communications
with Iinteractive terminals



Direct Memory Access

Takes over control of the system from the CPU
to transfer data to and from memory over the
system bus

Cycle stealing is commonly used to transfer data
on the system bus

processor is suspended just before it needs to use
the bus

DMA transfers one word and returns control to the
processor

processor pauses for one bus cycle



How DMA Works?

Processor sends the following information
read or write?
address of 1/0 device involved
starting address in memory
number of words

DMA transfers the entire block
DMA sends an interrupt signal when done



DMA

Data Lines 4

Address Lines «

DMA Request «
DMA Acknowledge
Interrupt

Read

Write

Figure 11.2 Typical DMA Block Diagram



Time

Instruction Cvele
o »
Processor Processor Processor Processor Processor Processor
Cycle Cycle Cycle Cycle Cycle Cycle
o pid Pl pid Pl pid -l
Fetch Decode Fetch Execute Store Process
Instruction | Instruction Operand | Instruction Result Interrupt
A A
DMA Interrupt
Breakpoints Breakpoint

Figure 11.3 DMA and Interrupt Breakpoints During an Instruction Cycle



DMA Configurations

Single bus, detached DMA

all modules share the same system bus
Inexpensive, but inefficient

Single bus, integrated DMA-1/0

there Is a separate path between DMA and 1/0
modules

1/0 bus

only one interface between DMA and I/0 modules
provides for an easily expandable configuration



T T 1T T
Lpnmu an U vo u ¢ o L Vo ULMEIHHTFU

(a) Single-bus, detached DMA

Memory

‘ Processor ‘ \

1/0

(b) Single-bus, Integrated DMA-1/O



System bus

N ~ LN .
I/O bus
o) -] 1
~ N\ ~_________\

(c) I/O bus

Figure 11.4 Alternative DMA Configurations



OS Design Objectives

Efficiency
Extremely slow compared with CPU

Use of multiprogramming allows for some
processes to be waiting on I/0 while another
process executes

Swapping Is used to bring in additional Ready
processes to keep the processor busy

Disk 1/0 is important to improve the efficiency
of the 1/0



OS Design Objectives

Generality

Desirable to handle all 1/0 devices In a
uniform manner

Hide most of the detalls of device 1/0 iIn
lower-level routines so that processes see
devices in terms of general functions such as
Read, Write, Open, and Close



/O Buffering

Perform input transfers in advance of
requests and perform output transfers
sometime after the request iIs made

Schemes
single buffering

double buffering
circular buffering



/O Buffering

Types of 1/0 devices

Block-oriented devices
Information is stored in fixed sized blocks
transfers are made a block at a time
used for disks and tapes

Stream-oriented devices
transfer information as a stream of bytes

used for terminals, printers, communication ports, mouse,
and most other devices that are not secondary storage



Single Buffer

OS assigns a buffer in main memory for
an 1/0 request

Block-oriented
Input transfers made to buffer
block moved to user space when needed

another block iIs moved into the buffer
read ahead



I/0 Device

I/0 Device

Operating System

User Process

4 D 4 D

= M
\.. J \.. J

(a) No buffering
Operating System User Process
f N { N
In Move

P <

\. J \.. .

(b) Single buffering




Operating System User Process

, In 4 Move
I/O Device ? _,.xk P
\ J \. J

(¢) Double buffering

Operating System User Process
1 4 )

I/O Device In I:l SEONE >
[ 1] & )

(d) Circular buffering

Figure 11.6 1/O Buffering Schemes (input)



Single Buffer

Block-oriented

user process can process one block of data while
next block is read in

swapping can occur since input is taking place in
system memory, not user memory

operating system keeps track of assignment of
system buffers to user processes

output is accomplished by the user process writing a
block to the buffer and later actually written out



Single Buffer

Stream-oriented
used a line at time

user input from a terminal is one line at a
time with carriage return signaling the end of
the line

output to the terminal is one line at a time



Double Buffer

Use two system buffers instead of one

A process can transfer data to or from
one buffer while the operating system
empties or fills the other buffer



Circular Buffer

More than two buffers are used

Each individual buffer is one unit in a
circular buffer

Used when 1/0 operation must keep up
with process



Disk Performance
Parameters

To read or write, the disk head must be
nositioned at the desired track and at the
neginning of the desired sector

DIsk 1/0 time

gueuing time (wait for device) +

channel waiting time (wait for channel) +
seek time +

rotational delay (latency) +

data transfer time




Wait for Wait for Seek Rotational
Device Channel Delay

Data
Transfer

4 Device Busy

Figure 11.7 Timing of a Disk 1/0 Transfer



Disk Performance
Parameters

Seek time

time It takes to position the head at the
desired track

T.=m?n+s

T, = estimated seek time, n = number of tracks

traversed, m = constant that depends on the disk
drive, s = startup time

Inexpensive disk : m = 0.3, s = 20ms
expensive disk :m=0.1,s =3ms



Disk Performance
Parameters

Rotational delay or rotational latency

time Its takes until desired sector Is rotated to
line up with the head
T.=1/(2r)
T, = average rotational delay time, r = rotation
speed Iin revolutions per second
disk : 3600 rpm, 16.7 ms/rot, T, = 8.3 ms ;

floppy : 300~600 rpm, 100~200 ms/rot, T, =
50~100 ms



Disk Performance
Parameters

Transfer time

time Iits takes while desired sector moves
under the head
T.= b/ (IN)
T, = transfer time
b = number of bytes to be transferred
N = number of bytes on a track
r = rotation speed in revolutions per second



Disk Performance
Parameters

Access time
sum of seek time and rotational delay

the time it takes to get in position to read or
write

Total Access Time
T,.=T,+T,+T,=T,+ 1/(2r) + b/(rN)



Timing Comparison

Data transfer occurs as the sector moves
under the head

Data transfer for an entire file I1s faster
when the file iIs stored In the same
cylinder and In adjacent sectors

lllustrate the danger of relying on average
values



Timing Comparison

Disk specification
average seek time : 20 ms
a transfer rate : 1MB/s
512-byte sectors with 32 sectors per track

suppose reading a file consisting 2048 sectors
for a total of 1MB : 64 tracks ? 32
sectors/track = 2048 sectors

T.=Db/ (rN) = 1024 * 1024 / (r * 512 * 32)
?2 r=064



Timing Comparison

Seqguential organization (single surface)

first track = 45 ms = 20 ms (average seek) +
8.3 ms (rotational delay) + 16.7 ms (read 32
sectors)

each succeeding 63 tracks = 25 ms = 8.3 ms
(rotational delay) + 16.7 ms (read 32 sectors)

total time = 45 ms + 63 tracks * 25 ms =
1620 ms = 1.6 secC



Timing Comparison

Random access (single surface)

each sector = 28.8 ms = 20 ms (average

seek) + 8.3 ms (rotational delay) + 0.5 ms
(read 1 sector)

total time = 2048 sectors * 28.8 ms = 58982
ms = 59 sec



Timing Comparison

Sequential parallel access
stored on same cylinders and same tracks
disk consists of 8 surfaces

first cylinder(8 tracks) = 45 ms = 20 ms
(average seek) + 8.3 ms (rotational delay) +
16.7 ms (read 32 sectors)

each succeeding 7 cylinders = 25ms = 8.3ms
(rotational delay) + 16.7 ms (read 32 sectors)

total time = 45ms + 7 * 25ms = 220 ms



Disk Scheduling Policies

Seek time Is the reason for the difference
In performance

need to reduce the average seek time

OS maintains a queue of requests for each
/0O devices

For a single disk there will be a number of 1/0
requests from processes in the queue



Disk Scheduling Policies

Assume a disk with 200 tracks

Starting at track 100 in the direction of
Increasing track number

Requested tracks in the order received :
55, 58, 39, 18, 90, 160, 150, 38, 184



Disk Scheduling Policies

Random scheduling
-irst-in, first-out (FIFO)
Priority

_ast-in, first-out

Shortest Service Time First
SCAN

C-SCAN

N-step-SCAN

FSCAN




Disk Scheduling Policies

Random scheduling
select requests from queue in random order
the worst possible performance

useful as a benchmark against which to
evaluate other techniques



Disk Scheduling Policies

First-in, first-out (FIFO)
process request sequentially
fair to all processes

If there are only a few processes that require
access and If many of the requests are to
clustered, good performance can be hoped

approaches random scheduling in
performance If there are many processes



Disk Scheduling Policies

Priority
goal Is not to optimize disk use but to meet
other objectives

short batch jobs may have higher priority
provide good interactive response time

longer jobs may have to wait long



Disk Scheduling Policies

Last-In, first-out

good for transaction processing systems

the device is given to the most recent user so
there should be little arm movement

iImprove throughput and reduce queue length
possibility of starvation since a job may never
regain the head of the line



Disk Scheduling Policies

Shortest Service Time First
select the disk 1/0 request that requires the
least movement of the disk arm from its
current position
always choose to incur the minimum Seek
time



Disk Scheduling Policies

SCAN

arm moves In one direction only, satisfying all
outstanding requests until it reaches the last
track In that direction

direction iIs reversed



Disk Scheduling Policies

C-SCAN

restricts scanning to one direction only

when the last track has been visited in one
direction, the arm is returned to the opposite
end of the disk and the scan begins again



Disk Scheduling Policies

N-step-SCAN

segments the disk request queue Iinto sub-
gueues of length N

sub-gueues are processed one at a time,
using SCAN

new requests added to other queue when
gueue Is processed

with large value of N, this is similar to SCAN
with N = 1, this is same as FIFO



Disk Scheduling Policies

FSCAN

two gueues

when a scan begins, all of the requests are In
one of the queues, with the other empty
during the scan, all new requests are put into
the other queue



Table 11.3 Disk Scheduling Algorithms [WIEDS7]

Name Description Remarks

Selection according to requestor

ERS Eandom scheduling For analysizs and simulation

FIF O First in first out Fairest of them all

PEI Priority by process Control outside of disk queue
managemet

LIFO Last in first out Mamimize locality and

resource utilization

selection according to requested item:

s F whortest serwvice tine first High utilization, small queues
SCAT Back and forth over disk Better service distribution
C-SCAN One way with fast return Lower service variability
N-step-SCAN SCAN of Mrecords at a time  Service guarantee

FoOCAN H-step-SCAD with M= queue Load-sensitive

size at beginming of SCATT
cycle




RAID(Redundant Array of
Independent Disks)

Why RAID?
big speed gap between CPU and disk

why not having a parallelism in disks?
Redundant Array of Independent Disks

RAID

many SCSI disks with RAID SCSI controller

organizations defined by Patterson et al.
level O through level 6

SLED(Single Large Expensive Disk)



RAID(Redundant Array of
Independent Disks)

Array of disks that operate independently
and in parallel

distribute the data on multiple disks

single 1/0 request can be executed in parallel
replaces large-capacity disk drives with
multiple smaller-capacity drives

Improves 1/0 performance and allows easier
Incremental increases in capacity



Characteristics of RAID

RAID is a set of physical disk drives
viewed by OS as a single logical drive

Data are distributed across the physical
drives of an array

Redundant disk capacity Is used to store
parity information, which guarantees data
recoverability in case of a disk failure



Table11.4 RAID levels

.- . v I/0 Request Rate | Data Transfer Rate Typical
Category | Level Description (Read/Write) (Read/Write) Application
Applications
e ) Large strips: Small strips: requiring high
Striping 0 | Nonredundant Excellent Excellent performance for
noncritical data
Mirroring 1 | Mirrored Good/Fair Fair/Fair System 'dn‘vcs;
critical files
7 l?cd undant via Hamming Poor Excellent
code
Parallel Large I/O request
access AT
3 | Bat-interleaved parity Poor Excellent :juc applications,
such as imaging,
CAD
4 | Block-interleaved parity Excellent/Fair Fair/Poor
Block-interleaved distributed _ o . ‘ IIlgh_rquz_s_l rake,
5 g Excellent/Fair Fair/Poot read-intensive, data
Independent parity looku
access P
R Applications
6 Block-interleaved dual Excellent/Poor Fair/Poor requiring extremely

distributed parity

high availablity




(a)

e

(c)

(d)

(e)

(f)

Strip 0

Strip 4
\\-\-\_\_\_'_,_,.:-"

Strip 8
S e

Strip 0
‘\_\_\_\_'_,_,_—’
Strip 4
o Iy
Strip 8
S R

Strip 1
Iy
Strip 5
A e
Strip 9
Mg omd | ER

Strip 1
1
Strip 5
Moo = -
Strip @
T et

T T
R e

Strip 2
""-\-\_\_\_\_'_'_,——F’
Strip 6

[memr ™ 2 ey
Strip 10
Mo T e

Pom
\-\_\_\_\___,,/
Strip 2
[y i
Strip 6

[osce o ¥ 2]
Strip 10
e D O

T T
[ e

Strip 3
[

Strip 7
Prosra s o L]
Strip 11
P ST oL

S
-l g

Strip 3
1

Strip 7
i
Strip 11

RAID level O

Strip O
]
Strip 4
[ ]

Strip 8
O

Strip 0
\\-\_\_\_\_'_,_,-f
Strip 4
e R e
Strip &
Sl SR

P
‘-H_,_\_\—'_‘__.J
Strip 0
P A
Strip 4
\_._\_\_'_,_,-ﬂ‘

Strip 8
[roien s - e
Strip 12
\.._\_\_\_'_'_,_/

P16-19

Strip 1
A By
Strip 5
ey
Strip 9
e

P
[
Strip 1
peod s i A
Strip &
frcenis o
Strip 9
B -l

P16-12

Strip 12

"M\_,_\_\_'_,_,_—/
Strip 2
\\-\_\_\_\_'_,_,_,-f‘

Strip 6
I Rty |
Strip 10
Al T e

e
e =
Strip 2
"'\-\_\_\_\_'_‘_,_/
Strip 6
'\_\_\_\_'_,__o-’

P8-11

e
Strip 13
Py aoiia

Strip 17

"ﬁ-\_,_\_\_'_'_,_/
Strip 3
1
Strip 7
oy

Strip 11
LEr

. e R e
e
Strip 3
AR
P4-T

(el e
Strip 10
e e ]
Strip 14

Ry
Strip 18

PO-2
P4-7
P8-11

T T
e

P0O-3
\'\-\_\_\_\_'_'_,_/
Strip 7

[
Strip 11
e R T P~
Strip 15
e

Strip 19

Figure 2-23. RAID levels 0

drives are shown shaded.

Strip 1

‘\_\_\_\_'_,_,-’
Strip 5
IR
Strip 9
e

P e
'\-\_\_\_\_'_'_,_’-’
Strip 2
e e
Strip 6
e

Strip 10
e

RAID level 3

RAID level 4

RAID level 5

W level 1

RAID level 2

through 5. Backup and

parity



RAID O (non-redundant)

a logical disk is divided into strips

strips : physical blocks, sectors, or some
other unit

writes consecutive strips over the drives
In round robin way

a stripe : a set of logically consecutive
strips that maps exactly one strip to each
array member




Il'“l,.,.--l—'_‘—l-h..‘..‘
P e

strip ()
strip 4
strip 8
strip 12

(a) RAID 0 (non-redundant)

IIl'.,.,.n--—'_‘—l-n...‘l"
e

strip 1
strip 5
strip 9
strip 13

",..-l—‘_‘—--..,\
T TR S o

strip 2
strip 6
strip 10
e
strip 14

RAID O (non-redundant)

I'.,.,.n-l—'_‘—l-n...“"
T e

strip 3
strip 7
strip 11
e

strip 15

[ ——



Physical Physical Physical Physical
Logical Disk Disk 0 Disk 1 Disk 2 Disk 3

strip® [-—-——-- T strip 0 |- -1 strip 1 === strip2 -~~~ sirip 3
b ' ] i R ] ]

stripl ~~—~-~ | strip 4 strip 5 strip &
e o s e

strip 10
"'-—___—-"'

strip 13 strip 14
o o e

strip2 [ =77
]

stripd [~
o i

strip 4

strip 9

- -
o - o -

strip 5
strip 6

o I
strip 7
strip &

Armay |
Management ,

software | 7
A ] R - 1 e e e
I"'--.____..-"

strip 10
".-'-—_—-".

strip 11
strip 12
e
strip 13
e

strip 14
b.-'--—_---"'.'

-

Figure 11.10 Data Mapping for a RAID Level 0 Array [MASS97]



RAID 1 (mirrored)

on a write, every strip Is written twice

on a read, either copy can be used
read performance can be up to twice as good

fault-tolerance i1s excellent



RAID 1 (mirrored)

r""'—-_—-""‘h
ey

strip ()
P
strip 4

strip 8
M

o o =

(b) RAID 1 (mirrored)

f""'_-__-""‘h
ll""-l-._._._.-l-"""‘

strip 2
strip 6

strip 10
Mo

—i"'_—__-"""\
o

strip 3
strip 7

strip 11
M

o =

e =

f""—-__-"“h
R —— |

strip 3
PR T ey
strip 7
[P ST =
strip 11
M e




RAID 2 (redundancy
through Hamming code)

works on a word basis + Hamming code
splitting each byte into a pair of 4-bit nibbles
adding 3 parity bits
7 bits are spread over the 7 drives
performance is good
In one sector time, It could write 4 sectors
losing one drive do not cause any problem

all the drives must be synchronized

on a single write, all data disks and parity disks must
be accessed



RAID 2 (redundancy
through Hamming code)

______

(¢) RAID 2 (redundancy through Hamming code)

______

______

Figure 11.9 RAID Levels (page 1 of 2)

______

““““““

______

______



RAID 3 (bit-interleaved
parity)

similar to RAID 2 : requires only single
redundant disk

a parity bit i1s generated by exclusive-or of
across corresponding bits on each data
disk

X4(i) = X3(3) @ x2() @ X1(31) @x0(i)

X1(i) = X4@1) @ X3(3i) @D X2(i) @ X0(i)



RAID 3 (bit-interleaved
parity)

ey M ] ey
P ] P ] e s T,
o o ] P
by by b, bs
SN, e P— P—

________________________

(d) RAID 3 (bit-interleaved parity)

______



RAID 4 (block-level parity)

work with strips with a strip-for-strip
parity written onto an extra drive

all the strips are EXCLUSIVE ORed together

If a drive crashes, the lost bytes can be
recomputed from the parity drive

performs poorly for small updates
need to recalculate the parity every time

parity drive may become a bottleneck



RAID 4 (block-level parity)

use an independent access technique
X4(i) = X3(i) @ X2(31) ®X1(i) D X0(i)
X4'(i) = X3(1) @X2(1) @ X1 ()D X0()
= X3()@® X2()@ X1 (@D X0()®D X1L(H)D X1(i)
= X4(M)@ X1H@ X1'(0)



T
A

block 0
l‘'--....,_l_‘_'_,_,....--"“'
block 4
o ]

block 8
M

block 12

1
1
1 1

-
e e -~

(e) RAID 4 (block-level parity)

’,.,.--—'_'—--...“
sy

block 1
“-....,_____,....--‘
block 5
o e

block 9
e

block 13

- -

e

ﬂ"""-—__""‘\
Py

block 2
l‘'""'l-|_.__|—l""""‘

block 6

block 10
1

block 14

i"""-—__-""“\
By

block 3
“""'l—_.__n—l""“

block 7

block 11
i

block 15

I",.,.---—'_'—l-h..‘."‘I
Py

P(0-3)

P(4-7)

P(8-11)
b

P(12-15)
S,

RAID 4 (block-level parity)




RAID 5 (block-level
distributed parity)

distributing the parity bits uniformly over
all the drives



e
E_J

block 0
M ]
block 4
]

block &
]

block 12
o

P(16-19)
e

I |
L 1
"‘-___,._.1-"“"L

.
ey

block 1
o
block 5
“"""——_—n—"""’d

block 9
i

P(12-15)
I Ty
block 16

I :
' -
e o -

s
[

block 2
s T
block 6
"""'l——_.—l-l"""

P(8-11)

block 13
P

block 17

| 1

""--__,._..--r“"I

(f) RAID 5 (block-level distributed parity)

RAID 5 (block-level
distributed parity)

o
P

block 3
e

P(4-7)
block 10
R
block 14

o Ry
block 18

o
I Ry

P(0-3)

block 7
.“"‘"——_—l—"’""‘

block 11
M

block 15
S

block 19




RAID 6 (dual redundancy)

e e,
i e |

block 0
e
block 4
o ]
block &8
]
block 12

(g) RAID 6 (dual redundancy)

o
ey

block 1
e
block 5
S

block 9
Mo

P(12-15)
-

e
iy

block 2
e

block 6
e

P(8-11)

Q(12-15)

o mm wm =

e
|

block 3
P,

P(4-7)
h.“_‘_‘_‘__'_'__,.,f
Q(8-11)

Ll

e
[ S|
P(0-3)

T
Q4-7)
h‘""l——._—l—l""""
block 10
N

block 14

= mm we =

Figure 11.9 RAID Levels (page 2 of 2)

@

0-3

Q(0-3)
block 7
block 11

Mo

block 15
—



Disk Cache

Buffer in main memory for disk sectors

Contains a copy of some of the sectors on
the disk

When an 1/0 request i1s made, a check Is

made to determine If the sector Is In the
disk cache



Replacement Policies

When a new sector Is brought into the
disk cache, one of the existing blocks
must be replaced

Least Recently Used
Least Frequently Used



Least Recently Used

The block that has been In the cache the
longest with no reference to it Iis replaced
The cache consists of a stack of blocks

When a block is referenced or brought into the
cache, it is placed on the top of the stack

Most recently referenced block is on the top of the
stack

The block on the bottom of the stack is removed
when a new block is brought in

Blocks don’t actually move around in main memory
A stack of pointers is used



Least Freqguently Used

The block that has experienced the fewest
references Is replaced
A counter Is associated with each block

Counter Is incremented each time block
accessed

Block with smallest count is selected for
replacement
Some blocks may be referenced many times
In a short period of time and then not needed
any more

frequency-based replacement technique



New Section Old Section

MRU * s LI

Re-reference;
count unchanged Re-reference;

count := count + 1

Miss (new block brought in)
count := 1

(a) FIFO
New Section Middle Section Old Section
fipor-uinl -}
MRU L N I " e 0

(h) Use of three sections

LRU

LRU

Figure 11.11 Freguency-Based Replacement



UNIX SVR4 1/0O Structure

| File Subsystem I

Y

Buffer ‘Cache I
w

Character Block
Device Drivers




@
=
r
E r
F
- =
z B
Device List @ -—%
Hash Table Buffer Cache = =
e ol
I [
I [
I [
. [
Device#, Block# - — ! .
-——-»
i~ »
[
[
[
[
[
[
[

Free List
Pointer

Figure 11.15 Unix buffer cache organization



I/0 Manager

Cache
Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Figure 11.16 Windows 2000 I/O Manager



(a) Constant angular velocity (b) Constant linear velocity

Figure 11.20 Comparison of Disk Layout Methods



