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Categories of I/O Devices

?Human readable
?used to communicate with the user
?video display terminals
?keyboard
?mouse
?printer



Categories of I/O Devices

?Machine readable
?used to communicate with electronic 

equipment
?disk drives
?tape drives
?controllers
?sensors
?actuators



Categories of I/O Devices

?Communication
?used to communicate with remote devices
?digital line drivers
?modems
?network drivers



Differences in I/O Devices

?Data Transfer Rate
?Application
?disk used to store files must have file-

management software
?disk used to store virtual memory pages 

needs special hardware to support it
?terminal used by system administrator may 

have a higher priority





Differences in I/O Devices

?Complexity of control
?Unit of transfer
?data may be transferred as a stream of bytes 

for a terminal or in larger blocks for a disk
?Data representation
?encoding schemes

?Error conditions
?devices respond to errors differently



Techniques for I/O function

?Programmed I/O
?process is busy-waiting for the operation to 

complete

?Interrupt-driven I/O
?I/O command is issued
?processor continues executing instructions
?I/O module sends an interrupt when done



Techniques for I/O function

?Direct Memory Access (DMA)
?DMA module controls exchange of data 

between main memory and the I/O device
?processor interrupted only after entire block 

has been transferred



Evolution of the I/O Function

?Processor directly controls a peripheral 
device
?simple microprocessor-controlled devices

?Controller or I/O module is added
?processor uses programmed I/O without 

interrupts
?processor does not need to handle details of 

external devices



Evolution of the I/O Function

?Controller or I/O module with interrupts
?processor does not spend time waiting for an 

I/O operation to be performed

?Direct Memory Access
?blocks of data are moved into memory 

without involving the processor
?processor involved at beginning and end only



Evolution of the I/O Function

?I/O module is a separate processor
?I/O channel
?access main memory for instructions

?I/O processor with its own memory
?it is a computer in its own right
?a large set of I/O devices can be controlled
?a common use is to control communications 

with interactive terminals



Direct Memory Access

?Takes over control of the system from the CPU 
to transfer data to and from memory over the 
system bus

?Cycle stealing is commonly used to transfer data 
on the system bus
?processor is suspended just before it needs to use 

the bus
?DMA transfers one word and returns control to the 

processor
?processor pauses for one bus cycle



How DMA Works?

?Processor sends the following information
?read or write?
?address of I/O device involved
?starting address in memory
?number of words

?DMA transfers the entire block
?DMA sends an interrupt signal when done



DMA





DMA Configurations

?Single bus, detached DMA
?all modules share the same system bus
?inexpensive, but inefficient

?Single bus, integrated DMA-I/O
?there is a separate path between DMA and I/O 

modules

?I/O bus
?only one interface between DMA and I/O modules
?provides for an easily expandable configuration







OS Design Objectives

?Efficiency
?Extremely slow compared with CPU
?Use of multiprogramming allows for some 

processes to be waiting on I/O while another 
process executes
?Swapping is used to bring in additional Ready 

processes to keep the processor busy
?Disk I/O is important to improve the efficiency 

of the I/O 



OS Design Objectives

?Generality
?Desirable to handle all I/O devices in a 

uniform manner
?Hide most of the details of device I/O in 

lower-level routines so that processes see 
devices in terms of general functions such as 
Read, Write, Open, and Close



I/O Buffering

?Perform input transfers in advance of 
requests and perform output transfers 
sometime after the request is made
?Schemes
?single buffering
?double buffering
?circular buffering



I/O Buffering

?Types of I/O devices
?Block-oriented devices
?information is stored in fixed sized blocks
?transfers are made a block at a time
?used for disks and tapes

?Stream-oriented devices
?transfer information as a stream of bytes
?used for terminals, printers, communication ports, mouse, 

and most other devices that are not secondary storage



Single Buffer

?OS assigns a buffer in main memory for 
an I/O request
?Block-oriented
?input transfers made to buffer
?block moved to user space when needed
?another block is moved into the buffer
?read ahead







Single Buffer

?Block-oriented
?user process can process one block of data while 

next block is read in
?swapping can occur since input is taking place in 

system memory, not user memory
?operating system keeps track of assignment of 

system buffers to user processes
?output is accomplished by the user process writing a 

block to the buffer and later actually written out



Single Buffer

?Stream-oriented
?used a line at time
?user input from a terminal is one line at a 

time with carriage return signaling the end of 
the line
?output to the terminal is one line at a time



Double Buffer

?Use two system buffers instead of one
?A process can transfer data to or from 

one buffer while the operating system 
empties or fills the other buffer



Circular Buffer

?More than two buffers are used
?Each individual buffer is one unit in a 

circular buffer
?Used when I/O operation must keep up 

with process



Disk Performance 
Parameters

?To read or write, the disk head must be 
positioned at the desired track and at the 
beginning of the desired sector

?Disk I/O time
?queuing time (wait for device) + 
?channel waiting time (wait for channel) + 
?seek time + 
?rotational delay (latency) + 
?data transfer time





Disk Performance 
Parameters

?Seek time
?time it takes to position the head at the 

desired track
?Ts = m ? n + s
?Ts = estimated seek time, n = number of tracks 

traversed, m = constant that depends on the disk 
drive, s = startup time
?inexpensive disk : m = 0.3, s = 20ms
?expensive disk   : m = 0.1, s = 3ms



Disk Performance 
Parameters

?Rotational delay or rotational latency
?time its takes until desired sector is rotated to 

line up with the head
?Tr = 1 / (2r)
?Tr = average rotational delay time, r = rotation 

speed in revolutions per second
?disk : 3600 rpm, 16.7 ms/rot, Tr = 8.3 ms ; 
?floppy : 300~600 rpm, 100~200 ms/rot, Tr = 

50~100 ms



Disk Performance 
Parameters

?Transfer time
?time its takes while desired sector moves 

under the head
? Tt = b / (rN)
?Tt = transfer time
?b = number of bytes to be transferred
?N = number of bytes on a track
?r = rotation speed in revolutions per second



Disk Performance 
Parameters

?Access time
?sum of seek time and rotational delay
?the time it takes to get in position to read or 

write

?Total Access Time
?Ta = Ts + Tr + Tt = Ts + 1/(2r) + b/(rN)



Timing Comparison

?Data transfer occurs as the sector moves 
under the head
?Data transfer for an entire file is faster 

when the file is stored in the same 
cylinder and in adjacent sectors
?Illustrate the danger of relying on average 

values



Timing Comparison

?Disk specification
?average seek time : 20 ms
?a transfer rate : 1MB/s
?512-byte sectors with 32 sectors per track
?suppose reading a file consisting 2048 sectors 

for a total of 1MB : 64 tracks ? 32 
sectors/track = 2048 sectors
?Tt = b / (rN) = 1024 * 1024 / (r * 512 * 32)
? ? r = 64



Timing Comparison

?Sequential organization (single surface)
?first track = 45 ms = 20 ms (average seek) + 

8.3 ms (rotational delay) + 16.7 ms (read 32 
sectors)
?each succeeding 63 tracks = 25 ms = 8.3 ms 

(rotational delay) + 16.7 ms (read 32 sectors)
?total time = 45 ms + 63 tracks * 25 ms = 

1620 ms = 1.6 sec



Timing Comparison

?Random access (single surface)
?each sector = 28.8 ms = 20 ms (average 

seek) + 8.3 ms (rotational delay) + 0.5 ms 
(read 1 sector)
?total time = 2048 sectors * 28.8 ms = 58982 

ms = 59 sec



Timing Comparison

?Sequential parallel access
?stored on same cylinders and same tracks
?disk consists of 8 surfaces
?first cylinder(8 tracks) = 45 ms = 20 ms 

(average seek) + 8.3 ms (rotational delay) + 
16.7 ms (read 32 sectors)
?each succeeding 7 cylinders = 25ms = 8.3ms 

(rotational delay) + 16.7 ms (read 32 sectors)
?total time = 45ms + 7 * 25ms = 220 ms



Disk Scheduling Policies

?Seek time is the reason for the difference 
in performance
?need to reduce the average seek time
?OS maintains a queue of requests for each 

I/O devices
?For a single disk there will be a number of I/O 

requests from processes in the queue



Disk Scheduling Policies

?Assume a disk with 200 tracks
?Starting at track 100 in the direction of 

increasing track number
?Requested tracks in the order received : 

55, 58, 39, 18, 90, 160, 150, 38, 184



Disk Scheduling Policies

?Random scheduling
?First-in, first-out (FIFO)
?Priority
?Last-in, first-out
?Shortest Service Time First
?SCAN
?C-SCAN
?N-step-SCAN
?FSCAN



Disk Scheduling Policies

?Random scheduling
?select requests from queue in random order
?the worst possible performance
?useful as a benchmark against which to 

evaluate other techniques



Disk Scheduling Policies

?First-in, first-out (FIFO)
?process request sequentially
?fair to all processes
?if there are only a few processes that require 

access and if many of the requests are to 
clustered, good performance can be hoped
?approaches random scheduling in 

performance if there are many processes



Disk Scheduling Policies

?Priority
?goal is not to optimize disk use but to meet 

other objectives
?short batch jobs may have higher priority
?provide good interactive response time

?longer jobs may have to wait long



Disk Scheduling Policies

?Last-in, first-out
?good for transaction processing systems
?the device is given to the most recent user so 

there should be little arm movement
?improve throughput and reduce queue length

?possibility of starvation since a job may never 
regain the head of the line



Disk Scheduling Policies

?Shortest Service Time First
?select the disk I/O request that requires the 

least movement of the disk arm from its 
current position
?always choose to incur the minimum Seek 

time



Disk Scheduling Policies

?SCAN
?arm moves in one direction only, satisfying all 

outstanding requests until it reaches the last 
track in that direction
?direction is reversed



Disk Scheduling Policies

?C-SCAN
?restricts scanning to one direction only
?when the last track has been visited in one 

direction, the arm is returned to the opposite 
end of the disk and the scan begins again



Disk Scheduling Policies

?N-step-SCAN
?segments the disk request queue into sub-

queues of length N
?sub-queues are processed one at a time, 

using SCAN
?new requests added to other queue when 

queue is processed
?with large value of N, this is similar to SCAN
?with N = 1, this is same as FIFO



Disk Scheduling Policies

?FSCAN
?two queues
?when a scan begins, all of the requests are in 

one of the queues, with the other empty
?during the scan, all new requests are put into 

the other queue





?Why RAID?
?big speed gap between CPU and disk
?why not having a parallelism in disks?
?Redundant Array of Independent Disks

?RAID
?many SCSI disks with RAID SCSI controller
?organizations defined by Patterson et al.
?level 0 through level 6

?SLED(Single Large Expensive Disk) 

RAID(Redundant Array of 
Independent Disks)



RAID(Redundant Array of 
Independent Disks)

?Array of disks that operate independently 
and in parallel
?distribute the data on multiple disks
?single I/O request can be executed in parallel

?replaces large-capacity disk drives with 
multiple smaller-capacity drives
?improves I/O performance and allows easier 

incremental increases in capacity



Characteristics of RAID

?RAID is a set of physical disk drives 
viewed by OS as a single logical drive
?Data are distributed across the physical 

drives of an array
?Redundant disk capacity is used to store 

parity information, which guarantees data 
recoverability in case of a disk failure



Table 11.4  RAID levels





RAID 0 (non-redundant)

?a logical disk is divided into strips
?strips : physical blocks, sectors, or some 

other unit
?writes consecutive strips over the drives 

in round robin way
?a stripe : a set of logically consecutive 

strips that maps exactly one strip to each 
array member



RAID 0 (non-redundant)





RAID 1 (mirrored)

?on a write, every strip is written twice
?on a read, either copy can be used
?read performance can be up to twice as good

?fault-tolerance is excellent



RAID 1 (mirrored)



RAID 2 (redundancy 
through Hamming code)

?works on a word basis + Hamming code
?splitting each byte into a pair of 4-bit nibbles
?adding 3 parity bits
?7 bits are spread over the 7 drives

?performance is good
?in one sector time, it could write 4 sectors
?losing one drive do not cause any problem

?all the drives must be synchronized
?on a single write, all data disks and parity disks must 

be accessed



RAID 2 (redundancy 
through Hamming code)



RAID 3 (bit-interleaved 
parity)

?similar to RAID 2 : requires only single 
redundant disk
?a parity bit is generated by exclusive-or of 

across corresponding bits on each data 
disk
?X4(i) = X3(i) + X2(i) + X1(i) + X0(i) 
?X1(i) = X4(i) + X3(i) + X2(i) + X0(i) 



RAID 3 (bit-interleaved 
parity)



RAID 4 (block-level parity)

?work with strips with a strip-for-strip 
parity written onto an extra drive
?all the strips are EXCLUSIVE ORed together

?if a drive crashes, the lost bytes can be 
recomputed from the parity drive
?performs poorly for small updates
?need to recalculate the parity every time

?parity drive may become a bottleneck



RAID 4 (block-level parity)

?use an independent access technique
?X4(i) = X3(i) + X2(i) + X1(i) + X0(i) 
?X4’(i) = X3(i) + X2(i) + X1’(i) + X0(i) 

= X3(i) + X2(i) + X1’(i) + X0(i) + X1(i) + X1(i)
= X4(i) + X1(i) + X1’(i) 



RAID 4 (block-level parity)



RAID 5 (block-level 
distributed parity)

?distributing the parity bits uniformly over 
all the drives



RAID 5 (block-level 
distributed parity)



RAID 6 (dual redundancy)



Disk Cache

?Buffer in main memory for disk sectors
?Contains a copy of some of the sectors on 

the disk
?When an I/O request is made, a check is 

made to determine if the sector is in the 
disk cache



Replacement Policies

?When a new sector is brought into the 
disk cache, one of the existing blocks 
must be replaced
?Least Recently Used
?Least Frequently Used



Least Recently Used

?The block that has been in the cache the 
longest with no reference to it is replaced
?The cache consists of a stack of blocks
?When a block is referenced or brought into the 

cache, it is placed on the top of the stack
?Most recently referenced block is on the top of the 

stack
?The block on the bottom of the stack is removed 

when a new block is brought in
?Blocks don’t actually move around in main memory
?A stack of pointers is used



Least Frequently Used

?The block that has experienced the fewest 
references is replaced
?A counter is associated with each block
?Counter is incremented each time block 

accessed
?Block with smallest count is selected for 

replacement
?Some blocks may be referenced many times 

in a short period of time and then not needed 
any more
?frequency-based replacement technique



Figure 11.11  Frequency-Based Replacement



UNIX SVR4 I/O Structure



Figure 11.15  Unix buffer cache organization






